Docker: A Quick Start
Guide

What we will cover

1

2
3.
4

What is a dockerfile and a compose file
How is Gym set up using docker
How to access the GPU with Docker

How is CoastSeg set up Docker

N by Sharon Fitzpatrick

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Docker Fundamentals & Benefits

™M
83

Containerization
Concept

Docker packages
applications with all
dependencies, creating
isolated, portable
environments that run
identically regardless of the
host system.

Development
Simplification

Eliminates "works on my
machine” problems by
ensuring consistent
environments from
development through
production.

GPU Access

Using Docker gives us a
standardized way of
accessing the GPU

£ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Installing Docker on
Windows

Download Docker Desktop

Visit docker.com and download the Docker

(‘\LJ Desktop installer for Windows. The installer
includes both Docker Engine and Docker Desktop
GUL
Install WSL2
Windows Subsystem for Linux 2 is required for
&5 Docker on Windows. Enable WSL2 through

PowerShell with administrator privileges using:
wsl --install.

Run Installer

@ Execute the Docker Desktop installer and follow
the prompts. Ensure "Use WSL2 instead of Hyper-
V" option is selected during installation.

System Reboot

N Restart your computer when prompted to
complete the installation process and initialize all
components properly.

£ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Veritying Your Docker Installation

L] =]
- - 'L
—_— - - - 1

Run Verification Command
Launch Docker Desktop

Launch PowerShell
Open Docker Desktop from your Start Menu. This
automatically starts the Docker engine in the
background.

docker info

£ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

What is a Dockerfile?

Instructions to build a container image, defining its

FROM ghcr.io/prefix-dev/pixi:@.41.4 AS build
FROM ghcr.io/prefix-dev/pixi:latest

base, dependencies, and runtime behavior

copy source code, pixi.toml and pixi.lock to the container
. . . # make coastseg a working directory
« Base Image & Build Context: Begins with a base WORKDIR /coastseg
image (USil’lg the FROM instruction) that SetS the # COPY the license and readme files otherwise the build will fail
COPY ./LICENSE ./LICENSE

COPY ./README.md ./README.md

foundation for your container.

copy the scripts and files you want to use in the container

O Layered Instructions: Uses Commands (hke RUN’ COPY ./certifications.json ./certifications.json
COPY ./1 download imagery.py ./1 download imagery.py
COPY, ADD) to build image layers, which enable e Sl s
}1. . 1 .l COPY ./5 zoo workflow_local model.py ./5 zoo workflow local model.py
CacC lng and lncrementa bUI ds- COPY ./6_zoo_workflow_with_coregistration.py ./6_zoo_workflow with_coregistration.py
3 3 4 o 1 # copy tt wproject.toml and pixi.lock file
« Runtime Configuration: Defines how the e e e

coPY .fpixi.lock ./pixi.lock

container behaves at startup through CMD or
copy the the notebooks

ENTRYPOINT, and COnﬁgureS enVI]fOI’lment COPY ./SDS_coastsat_classifier.ipynb /coastseg/SDS coastsat classifier.ipynb
. . 4 . COPY ./SDS_zoo_classifier.ipynb /coastseg/SD5_zoo classifier.ipynb
variables, working directories, and metadata.

RUN fusr/local/bin/pixi install --manifest-path pyproject.toml --frozen

« Networking & Storage: Optionally exposes ports

Indicate that Jupyter Lab inside the container will be listening on port B888.

and specifies volumes for networking and EXPOSE 8858
persistent data.

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

What is a Docker Compose File?

YAML configuration that sets up the environment, dependencies, and runtime settings for a Dockerized

application

« YAML Configuration: Defines
services, networks, and
volumes in a declarative
format.

o Service: A defined
container configuration
that runs a specific
application.

o Network: A virtual bridge
that connects containers
for communication.

« Simplified Commands: Build,
start, and stop all services with
a single command.

% compose.yml
services:

| segmentation_gym: |

build:
4 context: .
2 dockerfile: dockerfile
image: segmentation_gym
runtime: nvidia
stdin_open: true

tty: true
command: /bin/bash
11 volumes:
12 /home/sharon/gym/segmentation_gym/my_segmentation_gym datasets:/gym/my_segmentation_gym_datasets
13 deploy:
14 resources:
15 reservations:
1 devices:
17 - driver: nvidia
18 count: all
19 | capabilities: [fepull

Name of the service is segmentation gym
How to build service from the image segmentation gym

Allow the container to run in an interactive shell

€ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Bind Mounts

% Bind Mounts essentially link PE—

your local folder to your © compesen)

Container’S fO]_der : ;;F’f:iil‘leie:wi:es You, 22 hours ago | 1 author (You)
% Any changes made to a bind e

mount folder are reflected in the dockerfile: dockerfile

ports:

runtime: nvidia
stdin_open: true

folder locally IMEry

tty: true

« Direct Host-Container Link: A bind 4 comand: foin/bash
- 3] I - type: bind
mount dlreCt]'y maps d fl]'e or dlreCtory 14 | source: //c/development/doodleverse/coastseg/CoastSeg/data
from your host system to a specific ¥ et
7 source: //c/development/doodleverse/coastseg/CoastSeg/sessions

location inside the container. 3 ity [t e

- type: bind

+ Real-Time Synchronization: Changes Sl e et
. . o 22 - type: bind
made mn the blnd-mOuntEd dlI'GCtO]fy source: //c/development/doodleverse/coastseg/CoastSeg/tide model
. " 24 target: //coastseg/tide model
on the host are immediately reflected 25 - type: bind |
26 source: [f/c/development/doodleverse/coastseg/CoastSeg/src
in the container, and vice versa. BB e b
;] . . 29 - JUPYTER_ENABLE_LAB=yes
« Runtime Configuration: Bind mounts N s
are set up when the container is started § P
o 34 - driver: nvidia
(via Docker Compose or the Docker e

capabilities: [gpu]

CLI), not during the image build

process. « Here my folder

"[/c/development/doodleverse/coastseg/CoastSeg/data” is
linked to my containers "CoastSeg/data”

£ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

GPU Access with Compose File

« Compose Configuration: ——
Specify GPU requirements in et
3 build:
the Compose file using deploy e e
. . image: segmentation_gym
resources (e.g., setting device 2 i o]
stdin open: true
capabilities).
volumes:
PY Runtime Option: Use the . q/home/shamn/gym/segmentation_gym/my_segmentation_gym_datasets:/gym/my_s.egmentation_gym_datasets
deploy:
appropriate runtime flag ' =
3 devices:
(such as runtime: nvidia or -- _ A L

capabilities: [gpu]

gpus) to enable GPU support.
« This allows your computer's nvidia GPU during the containers

A\ This will NOT work if your .
runtime

computer does not have NVIDIA
drivers and the NVIDIA
Container Toolkit installed (QR
code for guide)

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Gym Dockertile

Base Image: Pixi

Use the base docker image provided by
Pixi

() DO NOT COPY the .pixi folder

o itsS massive

o it may cause your environment to
solve incorrectly

Set the CUDA version

This tells Pixi what version of CUDA will
be available at RUNTIME

A\ You will get build errors about
missing cuda libraries if you don't put
this here

Install the Pixi
Environment

Install the Pixi environment defined in
the pyproject.toml + pixi.lock file we
copied over

@ dockerfile X

" dockerfile
FILE: Dockerfile
FROM ghcr.io/prefix-dev/pixi:latest

1

ok W

o

=

=

L g gal
U B W N R 0K~

¥ commands_to_run_scripts_docker.md U ¥ pyproject.tom! compose.yml M I compos

WORKDIR /gym

Copy the src code, the model from scratch test and the seg images in folders script

COPY
COPY
COPY
COPY
COPY

COPY

./test gpus.py /gym/test gpus.py

./seg_images in folder no tkinter.py /gym/seg images in folder no tkinter.py
./train_model script no tkinter.py /gym/train model script no tkinter.py

. /make_dataset no_tkinter.py /gym/make dataset no tkinter.py
./batch_train models no tkinter.py /gym/batch train models no tkinter.py

./src /gym/src

Copy the scripts and pixi lock file so that the setup will run

COPY pixi.lock /gym/pixi.lock
COPY pyproject.toml /gym/pyproject.toml

ENV CONDA OVERRIDE CUDA=11.8

RUN /fusr/local/bin/pixi install --manifest-path pyproject.toml --locked

Entrypoint shell script ensures that any commands we run start with “pixi shell”,
which in turn ensures that we have the environment activated

when running any commands.

COPY entrypoint.sh /gym/entrypoint.sh

RUN chmod 700 /[gym/entrypoint.sh

ENTRYPOINT ["/gym/entrypoint.sh"]

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

How to Get Your Cuda Version

NVCC --version

(base) sharon@Sharonator:~$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Thu_Nov_18_09:45:30_PST_2021

Cuda compilation tools, release 11.5, V11.5.119
Build cuda_11.5.r11.5/compiler.30672275_0

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Gym Pyproject.toml

- : : 2 pyproject.toml
[tool.pixi.system-requirements] e
2 name = "segmentation_gym"
requires-python = "==3_1@"
4 version = "8.1.8"
[tool_pixi'system_requirements] 5 dependencies = ["nvidia-cudnn-cull»=9.7.1.26,<18"]
Cuda ="11.5" 7 # This tells pixi that CUDA is required to run this environment

and thus allows the pixi env to access GPU
Note this means the cuda drivers have to be available add build time
This means having access to _ cuda virtual packages

o This tells pixi that the environment needs to be el Lizatle e s

cuda = "11.5"
installed so that it can access CUDA e

build-backend = "hatchling.build"
o requires = ["hatchling”]
[project]
18 [toel.pixi.project]
19 channels = D"conda—for‘ge"ﬂl
9 platforms = ["linux-64"]
dependencies = ["nvidia-cudnn-cu11>=9.7.1.26,

22 [tool.pixi.pypi-dependencies]

<1 on] segmentation gym = { path = ".", editable = true }
;_ [tool.pixi.dependencies]
26 tensorflow = "==2.12.1"
o . . qe . t f = "»=4.48.3,<5"
« Notice that I am using nvidia-cudnn-cu11 instead S T
o 29 ipython = "»=8.23.8,<9"
of nvidia-cudnn-cu12 30 pandas = ">=2.2.3,<3"
31 natsort = ">=8.4.8,<9"
e Your nvidia-cudnn MUST match the CUDA version 72 matplotlib = 7>=3.9.1,<4"
3 scikit-image = "»=0.25.8,<0.26"
defined in system requirements et e

doodleverse-utils = "»=0.08.39,<0.0.48"
joblib = "»=1.4.2,¢2"

£ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Gym Compose File

Use the gym
dockerfile

« Tells compose to use the
dockerfile in the current
folder (context .) and call this
service segmentation_gym

Bind Mount

Here we mount my local
segmentation gym dataset to my
container's segmentation gym
dataset folder

o« We use the <SOURCE>:<DEST>
format

& compose.yml

P

6

services:
segmentation gym:

build:
context: .
dockerfile: dockerfile

image: segmentation gym

runtime: nvidia

stdin open: true

tty: true

command: /bin/bash

volumes:

/home/sharon/gym/segmentation gym/my segmentation gym datasets:/gsym/my segmentation gym datasets

deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Gym Docker Container GPU Access Issues

Docker does NOT have access to all the libdevice libraries since the compose file only gives the container access
to the GPU at runtime NOT build time

« This means that you will need to run your model training and inference in eager mode
tf.config.run_functions_eagerly(True)

 If you want to access libdevice libraries you would need use a Nvidia image with a GPU as the base image

If you don't run the models in eager mode you will get the error below because these files are NOT in the
container

packages/tensorflow/python/eager/execute.py"”, line 52, in quick_execute

tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InternalError: libdevice not found at ./libdevice.10.bc
[Op:__inference__update_step_xla_5925]

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

CoastSeg Files

Essential Docker Files

Navigate to the CoastSeg repository or website to
download these critical configuration files:

« Dockerfile - Contains instructions for building
the CoastSeg image

« composeyml - Defines services, networks, and
volumes

These files provide the blueprint for creating your
containerized CoastSeg environment and handling
dependencies automatically.

Essential Pixi Files

Download these supporting files to ensure proper
environment configuration:

 pixilock - Locks dependency versions for
reproducibility

 pyproject.toml - Defines Python package
specifications

These files ensure consistent package versions and
proper Python environment configuration within
your container.

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

CoastSeg DockerFile

Pixi Setup

Install the exact
versions of the
dependencies listed in
the pixi.lock file

Jupyter Lab
Setup

Expose the container's
port 8888 so we can
connect to the jupyter
lab instance will run
on that port on our
host machine

& compose.yml & dockerfile M X % test tensorflow.py U & dockerfile display U @

& dockerfile > ...

I
= D oA~

=
i ¥

L

I
A

M @

S

L

BORMN R RRKNMNBMNNRNRE
= @ WO 00 = o I)

W

il

BB A g W
W s = w o

i
1

FROM ghcr.io/prefix-dev/pixi:@.41.4 AS build
FROM ghcr.io/prefix-dev/pixi:latest

copy source code, pixi.toml and pixi.lock to the container
make coastseg a working directory
WORKDIR fcoastseg

COPY the license and readme files otherwise the build will fail
COPY ./LICENSE ./LICENSE
COPY ./README.md ./README.md

copy the scripts and files you want to use in the container

COPY ./certifications.json ./certifications.json

COPY ./1 download_imagery.py ./1_download_imagery.py

COPY ./2 extract_shorelines.py ./2_extract_shorelines.py

COPY ./3 zoo workflow.py ./3 zoo workflow.py

COPY .f5 zoo workflow local model.py ./5 zoo workflow local model.py

COPY ./6 zoo workflow with_coregistration.py ./6_zoo workflow with coregistration.py

copy the pyproject.toml and pixi.lock files
COPY ./pyproject.toml ./pyproject.toml
COPY .fpixi.lock ./pixi.lock

copy the the notebooks
COPY ./SDs_coastsat classifier.ipynb /coastseg/SDS_coastsat_classifier.ipynb
COPY ./SDS_zoo_classifier.ipynb /coastseg/SDS_zoo_ classifier.ipynb

» tool.poa.featurer

install dependencies to ~/coastseg/.pixi/envs/’

use " --locked” to ensure the lockfile is up to date with pixi.toml

use “--frozen install the environment as defined in the lock file, doesn’t update pixi.lock if it isn’'t up-to-date with manifest file
RUN pixi install --locked

RUN fusr/local/bin/pixi install --manifest-path pyproject.toml --frozen

This tells Python to include /coastseg/src (where your coastseg package likely resides) when searching for modules.

ENV PYTHONPATH=/coastseg/src:$PYTHONPATH

Indicate that Jupyter Lab inside the container will be listening on port 8888.
EXPOSE 8888

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

CoastSeg Compose File

Allow the container to be run in an interactive shell

[* Run Service
coastseg:
Mount the folders data, sessions, logs and the s

. dockerfile: dockerfile
coastseg source code from my computer into the s

o - "B8388:8888"
CODtalner runtime: nvidia
stdin_open: true
tty: true
Enable JUPYTER LAB to run comnand: /hin/bash
volumes :

- type: bind
source: [/fc/development/doodleverse/coastseg/CoastSeg/data
target: //coastseg/data

- type: bind
source: [f/c/development/doodleverse/coastseg/CoastSeg/sessions
target: //coastseg/sessions

- type: bind
source: [/c/development/doodleverse/coastseg/CoastSeg/logs
target: //coastseg/logs

- type: bind
source: [/c/development/doodleverse/coastseg/CoastSeg/tide model
target: //coastseg/tide model

- type: bind
source: [f/c/development/doodleverse/coastseg/CoastSeg/src
target: //coastseg/src

environment:

- JUPYTER ENABLE |AB=yes

deploy:

resources:
reservations:

devices:
- driver: nvidia
count: all
capabilities: [gpu]

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Build & Run the Container

i

Step 1

docker compose up -d
--build

e -d:mean build the
container in
deatached mode

e --build: means build
the docker container
if it does not exist

Step 2

docker ps

 Listsall the running
docker containers

>

Step 3

docker exec -it
<CONTAINER ID>

-it creates an interactive
terminal session,
allowing you to run
commands directly
inside the container as if
you were working in a
normal shell
environment.

>

Step 4

pixi shell --frozen

--frozen: install the
environment as
defined in the
lockfile. Without
checking the status of
the lockfile.

--locked: only install if
the pixi.lock is up-to-
date with the
pixi.toml1. Conflicts
with --frozen.

£ Made with Gamma

https://prefix.dev/docs/pixi/cli#user-content-fn-1
https://gamma.app/?utm_source=made-with-gamma

Building the CoastSeg Container

Build the Container

PS C:\development\doodleverse\coastseg\CoastSeg> docker compose up -d --build

Docker PS

PS C:\development\doodleverse\coastseg\CoastSeg> docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
dOce32be11f6 coastseg-coastseg "/bin/bash" About a minute ago Up About a minute
0.0.0.0:8888->8888/tcp coastseg-coastseg-1

Launch the Docker Container in Interactive Mode

PS C:\development\doodleverse\coastseg\CoastSeg> docker exec -it dOce32be11f6 /bin/bash

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Running Jupyter Notebook in Docker

CoastSat workflow

> pixi shell --frozen
(coastseg) > jupyter lab SDS_coastsat_classifier.ipynb --ip=0.0.0.0 --allow-root --no-browser

7,00 Workflow

> pixi shell -e ml --frozen
(coastseg:ml) > pixi run run_notebook

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Core Docker Commands

Command
docker ps
docker ps -a

docker stop

docker images

docker rm

docker info

Description
List only running containers.
List all containers (both running and stopped).

Stop one or more running containers (use
container ID or name).

List all Docker images stored locally.

Remove one or more containers (use container ID
Oor name).

Display system-wide information about Docker,
including configuration and usage.

& Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Wrap Up

e Dockerfiles let you configure how to build your
image

e Docker compose files let you define how to
build your image

e [have more guides available at
https://2320sharon.github.io/reproducible envi

ronments guide/

£ Made with Gamma

https://2320sharon.github.io/reproducible_environments_guide/
https://2320sharon.github.io/reproducible_environments_guide/
https://gamma.app/?utm_source=made-with-gamma

