
Using Pixi: A Quick Start
Guide
An introduction to Pixi. This guide will help you understand how Pixi can
be used and what makes it special

by Sharon Fitzpatrick

https://gamma.app/?utm_source=made-with-gamma

What is Pixi?
Pixi is a package management tool

� Conda: Leverage the existing conda ecosystem to obtain packages written in Python, C, C++, and many other languages.
L Reproducibility: Work in dedicated, isolated environments that can be easily recreated.
v Tasks: Manage complex pipelines effortlessly.
q Multi Platform: Ensure compatibility across Linux, macOS, Windows, and more.
ÿ Multi Environment: Compose multiple environments within a single Pixi manifest.
ª Building: Build packages from source using powerful build backends.
/ Distributing: Distribute your software via conda channels or various other options.
á Python: Full support for pyproject.toml and PyPI dependencies.
n Global Tools: Install globally available tools, safely stored in separate environments.

https://gamma.app/?utm_source=made-with-gamma

Key Features of Pixi

Y Reliable
Environment
Pixi will create your environment the
same way every time. Pixi uses a lock
file to lock in all your dependencies,
so they install the same every time

{ Pixi Environments
can mix conda-forge
and pypi
dependencies

§ Super Fast
Dependency Solver
Unlike Conda, mamba, and pip
solvers Pixi can solve your
dependencies SUPER fast.

https://gamma.app/?utm_source=made-with-gamma

Wait so& what exactly is Pixi?
Pixi is what we wanted conda to be.

Pixi environments can use a mix of conda-forge and pip dependencies natively
Pixi lets you specify EXACTLY what packages should be install from conda and from PyPi
Pixi LOCKs the EXACT version of each dependency for each OS
o No more hoping the environment will solve correctly

https://gamma.app/?utm_source=made-with-gamma

Core Pixi Components
This is what makes up a Pixi workspace

Y Pixi.lock
lock-file that describes the exact
dependencies

� pyproject.toml
file that describes the workspace

/ .pixi
folder that contains the environment

Y Pixi still uses conda and pip packages to create your environment

https://gamma.app/?utm_source=made-with-gamma

Install Pixi with Powershell
Open Powershell

powershell -ExecutionPolicy ByPass -c "irm -useb https://pixi.sh/install.ps1 | iex"

Execute Installation Command

pixi --version

Verify Installation
If you got an error don't worry we address this in the next slide

https://gamma.app/?utm_source=made-with-gamma

Give Pixi Access to Powershell
Option #1: Give Pixi Permission to Run

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

Option #2: Temporarily Give Pixi permission to run
this command is temporary so you will need to re-run it each time you run pixi shell in a new powershell window

function Invoke-Pixi {
 powershell.exe -ExecutionPolicy Bypass -Command "pixi $args"
}

Set-Alias pixi Invoke-Pixi -Option AllScope

https://gamma.app/?utm_source=made-with-gamma

Pixi Demo
 We will be using Pixi on a new code base to understand how to use its core
features
1. Add conda depdencies

2. Add pip depdencies

3. Activate a pixi environment

4. Use Multiple Environments

https://gamma.app/?utm_source=made-with-gamma

1. Create the Pixi environment

pixi init 4format pyproject

For this demo we will start by creating a folder called
pixi demo and creating our pyproject.toml file with the
following command
Initialize the project

This creates a pyproject.toml file and a pixi.lock file
that will hold the pixi configuration information

Windows PowerShell
PS C:\development\7_demos> mkdir pixi_demo
PS C:\development\7_demos> cd .\pixi_demo\
PS C:\development\7_demos\pixi_demo> pixi init --format
pyproject
Created C:\development\7_demos\pixi_demo\pyproject.toml
PS C:\development\7_demos\pixi_demo> ls
 Directory: C:\development\7_demos\pixi_demo
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 3/27/2025 1:42 PM src
-a---- 3/27/2025 1:42 PM 122 .gitattributes
-a---- 3/27/2025 1:42 PM 38 .gitignore
-a---- 3/27/2025 1:42 PM 403 pyproject.toml

https://gamma.app/?utm_source=made-with-gamma

2. Add conda-forge dependencies

pixi add mkdocs

Add a conda forge dependency

Adds mkdocs as a conda forge dependency
Updates the dependencies pyproject file list in the
pyproject.toml file

> pixi add mkdocs
Added mkdocs >=1.6.1,<2
>

powershell

https://gamma.app/?utm_source=made-with-gamma

2. Add conda-forge dependencies

Pyproject.toml

After running pixi add mkdocs this updates
the tool.pixi.dependencies to include mkdocs
You could have specified a version by running
pixi add mkdocs<1.6.2

Pyproject.toml

https://gamma.app/?utm_source=made-with-gamma

3. Add pypi dependencies

pixi add pandas --pypi

Add a pypi dependency

-- pypi: adds pandas a pypi depdency
Updates the dependencies pyproject file list in the
pyproject.toml file

PS C:\development\7_demos\pixi_demo> pixi add pandas --
pypi
Added pandas >=2.2.3, <3
Added these as pypi-dependencies.
PS C:\development\7_demos\pixi_demo>

powershell

https://gamma.app/?utm_source=made-with-gamma

3. Add PyPi dependencies

pixi add pandas --pypi

Pyproject.toml

Updated [project] section to add pandas to
the dependencies list
dependencies: contains all the dependencies
from pip

Pyproject.toml

https://gamma.app/?utm_source=made-with-gamma

4. Install and Activate the Environment

> pixi install
The default environment has been installed.

> pixi shell

Install the Environment

This installs the environment from the pixi.lock file

Activate the Environment

This activates the default environment we made
equivalent to conda activate <ENVIRONMENT NAME>

> pixi install
The default environment has been installed.
> pixi shell
(pixi_demo) >

powershell

{ Notice that (pixi demo) is the name of the environment
matches the name of the name in the pyproject.toml file

https://gamma.app/?utm_source=made-with-gamma

5. Test Pixi Environment

(pixi_demo) > exit
>

w Unlike conda, Pixi environments are specific to the folder
they are created in.
Pixi Shell

Now that pixi shell is active we can use the environment just
like we would with conda.
Exit the Shell

To exit pixi shell enter exit

After you exit the (pixi_demo) is gone

> pixi shell
(pixi_demo) > python
>>> import pandas
>>> import mkdocs
>>> quit()

Here we open python and we can use the two dependencies
we installed and both work!

https://gamma.app/?utm_source=made-with-gamma

6. Create Multiple Environments

[project.optional-dependencies]
geo = ["geopandas"]

� Pixi allows you to create multiple environment within the
same pixi file
Optional Dependencies

geo is the name of the environment and ["geopandas"] is
a list of the dependencies for that environment

[tool.pixi.environments]
default = {features = [], solve-group = "default"}
geo = {features = ["geo"], solve-group = "default"} #
geo environment with geopandas dependency

List all your Pixi Environments

Under [tool.pixi.environments] lists all the environments
including the original environment (default) we made
earlier

Solve group tells Pixi to make the environment
compatible with the environment listed in the solve-
group.

Example: solve-group = "default" for the test
environment means that the "geo" environment will
be compatible with the default environment

https://gamma.app/?utm_source=made-with-gamma

Pyproject.toml after multi environment

[project.optional-dependencies]
geo = ["geopandas"]

[tool.pixi.environments]
geo = {features = ["geo"], solve-group = "default"}

[project]
authors = [{name = "Sharon Fitzpatrick"}]
name = "pixi_demo"
requires-python = ">= 3.11"
version = "0.1.0"
dependencies = ["pandas>=2.2.3,<3"]

conda forge dependencies
[tool.pixi.dependencies]
mkdocs = "<2"

Optional Dependencies
Lists the two new environments we added

Tool.pixi.environments

Lists all environments
Indicates that all environments should be compatible
with our default environment

Geo Environment

Default Environment

pyproject.toml

https://gamma.app/?utm_source=made-with-gamma

7. Using Multiple Environments

pixi install -e geo

pixi shell -e geo

exit
pixi shell

Install New Environment
-e : this means install the environment

Using the New Environment

Switch Environments

To exit the geo environment and use the default
environment
È Whenever you run pixi shell pixi will automatically call
pixi install behind the scenes

> pixi install -e geo
 The geo environment has been installed.
> pixi shell -e geo
(pixi_demo:geo) > python -c "import geopandas"
(pixi_demo:geo) > exit
> pixi shell
(pixi_demo) >

https://gamma.app/?utm_source=made-with-gamma

CoastSeg Demo with Pixi
In this demo we will show how to set up CoastSeg with Pixi

Install the CoastSeg default environment�.
Launch a notebook�.
Switch Environments to the "ml" environment�.
Launch the zoo notebook in the ml environment�.

Full tutorial on using CoastSeg with Pixi

https://gamma.app/?utm_source=made-with-gamma

Install CoastSeg with Pixi

cd <COASTSEG LOCATION>

Open Terminal
Change directories to CoastSeg

pixi install --frozen

Run Installation Command
Installs the default environment

 --frozen : means install the environment exactly as it is
defined in the pixi.lock

pixi shell --frozen

Activate the default environment

https://gamma.app/?utm_source=made-with-gamma

 Troubleshooting Pixi Errors

tells powershell that Pixi is safe to connect to Powershell
function Invoke-Pixi {
 powershell.exe -ExecutionPolicy Bypass -Command "pixi $args"
}

Set-Alias pixi Invoke-Pixi -Option AllScope

pixi shell --frozen

https://gamma.app/?utm_source=made-with-gamma

Launch Jupyter Notebook

python -c "import coastseg"

jupyter lab SDS_coastsat_classifier.ipynb

Verify the installation worked

Launch the notebook

C:/CoastSeg > pixi install --frozen
C:/CoastSeg > pixi shell --frozen
(coastseg) C:/CoastSeg >
(coastseg) C:/CoastSeg > python -c "import coastseg"
(coastseg) C:/CoastSeg >
(coastseg) C:/CoastSeg > jupyter lab
SDS_coastsat_classifier.ipynb

Terminal

https://gamma.app/?utm_source=made-with-gamma

Switch to ML environment
{ Normally tensorflow and transformers are NOT compatible with the rest of the coastseg
dependencies but by putting them in their own environment we can use them

pixi shell -e ml --frozen

python -c "import tensorflow; from transformers import
TFSegformerForSemanticSegmentation;"

Switch Environments
* Remember Pixi Shell will automatically run pixi install if
the environment has not been installed

Import ML dependencies in new
environment

C:/CoastSeg > pixi install --frozen
C:/CoastSeg > pixi shell --frozen
(coastseg) C:/CoastSeg >
(coastseg) C:/CoastSeg > python -c "import coastseg"
(coastseg) C:/CoastSeg >
(coastseg) C:/CoastSeg > jupyter lab
SDS_coastsat_classifier.ipynb

Terminal

https://gamma.app/?utm_source=made-with-gamma

Bonus Troubleshooting Tips
#1: Delete the .pixi file to clear existing environment

This removes all the installed packages
Run pixi install after removing to re-install all packages
If things are really bad

�. Delete pixi.lock
�. Delete .pixi
�. Run pixi install

#2: View the dependencies of your packages

pixi tree -i <PACKAGE NAME> pixi tree

https://gamma.app/?utm_source=made-with-gamma

Bonus Troubleshooting Tips
#3: Use --frozen instead of --locked

If your lock file is not up to date with your workspace use
4 frozen to use the dependencies installed in the .pixi
folder

https://gamma.app/?utm_source=made-with-gamma

Pixi Command Reference Table

https://gamma.app/?utm_source=made-with-gamma

